An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells
نویسندگان
چکیده
In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms.
منابع مشابه
Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملNano Organic Transistor with SiO2 / Poly VinylPyrrolidone Dielectric
In this paper, the morphology, roughness and nano structural properties of SiO2/Poly Vinyl Pyrrolidone synthesized with sol gel method, characterized by using scanning electron microscopy, atomic force microscopy and GPS132A techniques.The main material taken from oxide silicon with weight percentage of 20, 40, 60, 80 and from poly vinyl pyrrolidone with percentages of 80, 60, 40, 20 is synth...
متن کاملAnalytical Performance and Quality Control of a Glucose Monitor System
Background and Objective: The reliability and validity of monitors for self-monitoring of blood glucose are debated. We evaluated the analytical performance of Accu-check Active (Boehringer Mannheim, Roche) which is one of the most commonly used monitors in Iran. Material and Methods: We compared the monitor readings with the reference values by percentage of values within...
متن کاملCombined Optical and Electronic Sensing of Epithelial Cells Using Planar Organic Transistors
A planar, conducting-polymer-based transistor for combined optical and electronic monitoring of live cells provides a unique platform for monitoring the health of cells in vitro. Monitoring of MDCK-I epithelial cells over several days is shown, along with a demonstration of the device for toxicology studies, of use in future drug discovery or diagnostics applications.
متن کاملSurface Dose Measurements on an Indigenously Made Inhomogeneous Female Pelvic Phantom Using Metal-Oxide-Semiconductor-Field-Effect-Transistor Based Dosimetric System
Introduction: Megavoltage X-ray beams are used to treat cervix cancer due to their skin-sparing effect. Preferably, the radiation surface doses should be negligible; however, it increases due to electron contamination produced by various field parameters. Therefore, it is essential to provide proper knowledge about the effect of different field parameters on radiation doses. This study sought t...
متن کامل